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CONVERGENCE OF RELAXATION SCHEMES 
FOR HYPERBOLIC CONSERVATION LAWS 

WITH STIFF SOURCE TERMS 

A. CHALABI 

ABSTRACT. We focus in this study on the convergence of a class of relaxation 
numerical schemes for hyperbolic scalar conservation laws including stiff source 
terms. Following Jin and Xin, we use as approximation of the scalar conser- 
vation law, a semi-linear hyperbolic system with a second stiff source term. 
This allows us to avoid the use of a Riemann solver in the construction of 
the numerical schemes. The convergence of the approximate solution toward 
a weak solution is established in the cases of first and second order accurate 
MUSCL relaxed methods. 

1. INTRODUCTION 

Hyperbolic conservation laws with stiff source terms could describe the effect of 
relaxation as in the kinetic theory of gases, elasticity with memory, water waves, 
traffic flows, etc. 

These problems may be mathematically written in scalar case as a Cauchy prob- 
lem of the form 

(1.1 ) ut+f(u). ,=q(u), (x,t) EIRx]O,T[;T> O 

(1.2) u(x, 0) = uo(x), x E R. 

Theoretical study of the relaxation phenomena may be found in Chen et al. [7], 
Liu [20], and Whitham [32]. 

Numerical methods have been derived for the approximation of the conservation 
laws including nonstiff source terms in [3], [4], [24], [26], and [29]. These methods 
are based on explicit difference schemes. It is well known that explicit schemes are 
not appropriate for the numerical treatment of the stiff source terms; this motivates 
the use of semi-implicit and fully implicit schemes. 

The approximation of the stiff case was recently studied by several authors (see 
[2], [6], [8], [13], [15], [17], [19], [25], and [26]), where different methods like asymp- 
totic or splitting methods are used. 

The main difficulty when we deal with the numerical solution of the stiff problems 
is the wrong location of the discontinuities. This -problem has been investigated in 

[2], [8], [11], [13], [15], [17], and [19]. 
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Error bounds related to the approximation of (1.1)-(1.2) were derived in [5], [25] 
and [29]. 

In a recent study, Jin and Xin ([16]) introduced explicit relaxing schemes for the 
approximation of systems of hyperbolic conservation laws without source terms. 
Our purpose in this paper is the study of the convergence of semi-implicit relaxed 
schemes for the approximation of scalar conservation laws, including stiff source 
terms. 

We do not assume here that the source term q is a Lipschitzian function in u but 
we suppose that q' < 0. This last hypothesis is realistic since it does indicate the 
dissipativity of the source term q in the sense of [7]. This is the case in the models 
of combustion ([2], [11], [21]), gas dynamics with heat transfer ([13]), water waves 
in the presence of the friction force of the bottom ([7]), etc. We point out that in 
all these examples and many others the source term is not a Lipschitzian function. 
The nonpositivity of q' is also assumed by Liu in [20] and Chen et al. in [7]. 

Thanks to the implici. character and to the dissipativity of the source term q 
(nonpositivity of q'), some proposed schemes are TVD, entropy satisfying at the 
limit, and they are monotone in the first order accurate semi-implicit case. Then 
they possess almost all the same properties as in the homogeneous schemes (q = 0). 

This paper is organized as follows. Section 2 is devoted to recalling some prelim- 
inaries related to the hyperbolic conservation laws, including source terms. At first 
we give results which summarize the properties of the exact solution of the Cauchy 
problem when q' is nonpositive. These properties are similar to those related to the 
homogeneous case. In Section 3, we give an error bound for the relaxation problem. 
Section 4 concerns the upwind semi-implicit relaxing schemes. Section 5 is devoted 
to the study of the first and second order accurate relaxed schemes. An extension 
to the two dimensional case is presented in Section 6. Finally, in Section 7, we give 
concluding remarks. 

2. PRELIMINARIES 

We seek a weak solution to the Cauchy problem (1.1)-(1.2); that is a function 
u E l? (IRk x ]0, T[) satisfying 

LJ(AT[ut + f (u)so,]dxdt + juo(x)so(x 0)dx - j q(u)so(x, t)dxdt 
0 ],T[ 0 ],T[ 

for all o E C (IlR x [0,T[), with compact support in (IlR x [0,T[). 
Let r1 C2 (Il) be a strictly convex function, whose entropy flux is F, that is 

(2.1) '(u) f '(u) = F'(u) Vu E R. 

The solution of (1.1)-(1.2) is not necessarily unique and the physical one is char- 
acterized by the following entropy condition: 

(2.2) f L [$(u)sot + F(u)>x]dxdt + j (uo(x))so(x 0)dx 
0 ],T[ 

> f f rq'(u)q(u)p(x, t)dxdt 
f aO,T[ 

for all test positive functions fo E C1 (Rl x [0, T[), with compact support in Rl x [0, T[. 
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Let u(x, t) = S(t)uo denote the unique weak solution of (1.1)-(1.2) which satisfies 
the entropy condition. Let us assume that 

(2.3) sup q'(u) < -y, -y = constant. 
u 

Using a result of Kruzkov ([18]), we can easily prove the following 

Proposition 2.1. If uo E BV(R) n L1(RI), f E C1(RI), q E C1(R) such that q(O) 
0 and q' < 0, then the problem (1.1)-(1.2) possesses a unique entropy solution 
u(x, t) = S(t)uo satisfying: 

i) | S(t)uo 11L(R)?<1 U0 IuIL(R); 
ii) Moreover, for any vo E L??(R) we have 

S(t)uo - S(t)vo hL1(R)<11 UO - V0 hL1(IR); 

iii) TV(S(t)uo) < TV(uo); 
iv) If uo(x) < vo(x), then S(t)uo < S(t)vo. 

Remark 2.1. If we suppose that q E C (R) such that q(O) = 0 and q' < 0, then q 
is dissipative in the sense of Chen et al. ([7]). Indeed if we take rj(u) = u2/2 as an 
entropy function and apply the mean value theorem to q, we get 

t1'(u)q(u) = u[q(0) + uq'(/)] (min(0, u) < ( < max(0, u)) 
=q(()u2 < O. 

Let h be the spatial size and k be the time grid size related to h by the fixed positive 
number r through 

(2.4) r = k/h. 

A weak solution of (2.1)-(2.3) is approximated by a function Uh defined on 
Rx]O,T[ by 

(2.5) Uh(X, t) = un for (x, t) E Ij x Jn 

with 

I. x Jn =](j - 1/2)h, (j + 1/2)h[x](n - 1/2)k, (n + 1/2)k[ 

for all j E Z and n < N = E(T/k) + 1, where E denotes the integer part function. 
The initial condition (2.2) is projected into the space of piecewise constant func- 

tions by 

(2.6) u? = uo(x)dx Vj E Z. 

In all the following, we assume that 

(2.7) uo E BV(R), f EC1(R), 

(2.8) q E C1(R) such that q(O) = 0, q' < 0. 
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3. THE RELAXATION PROBLEM 

Now, as in [16], let us associate with the scalar Cauchy problem (1.1)-(1.2), the 
semi-linear relaxation system 

ut + vx = q(u) 

(3.1) U 1 
Vt + aux --(v -f (u)) 

with the initial data 

(3.2) U(X,O) = Uo(x), v(x, 0) = vo (X) = f (uo (x)), 

where the small parameter e is the relaxation rate and a is a positive constant. Let 
(ue, v.) be the solution of the system (3.1). If we consider a formal expansion of 
Hilbert type, we get 

v, = f(U6) + eve + c2vE + 

We obtain as a first order approximation of the system (3.1) 

(3.3) Ut + f(U)x = q(u) + c(f'(u)q(u))x + E((a -f(U)2)UX)X. 

Thus, (3.3) is dissipative if the following subcharactrestic condition is satisfied: 

(3.4) -C\i ? f'(u) < \/C for all u. 

Let Q = Rx]O, T[, then by similari proof to that in [9], we prove 

Theorem 3.1. Suppose that the initial data is bounded and the subcharacteristic 
condition (3.4) is satisfied, then 

i) The relaxation problem (3.1)-(3.2) admits a unique solution. 
ii) If we suppose further that there is no interval on which the flux function 

f is affine, then the solution (uC,v6) of (3.1)-(3.2) converges in LP(Q) x 
L2(Q), 0 < p < oo toward (u, f (u)) as e tends to zero, where u is the entropy 
solution of (1.1)-(1.2). 

iii) We have the bound error: 

I f(u ) - V' L2(Q)< C\/C, 

where C is a positive constant. 

Proof. The proof of i) is based on invariant regions (see [9]). Using the entropy 
inequality we obtain ii). 

Let us prove property iii) as we do in the homogeneous case in [14]. Let 
(rq(u,v),F(u,v)) be a convex entropy-flux entropy function associated with the 
system (3.1) such that 

arqv = Fu, rqu = Fv 

by multiplying the first equation of (3.1) by qu and the second equation of (3.1) by 
r7v. Summing the obtained equations, we get 

qr(u, v) + 0F(u, v) =-r7(f (u) - v) + q(u)>7u. 
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Hence, 

- J v - f (u))dxdt - q(u)rudxdt 

j r(u(x, T), v(x, T))dx - q (uo(x), vo(x))dx. 

Thus 

- v (v - f(u))dxdt - qj ()u2r,uu (a, 3) < J (uo (x), vo (x))dxdt. 

We have 

v(u, V) = (v-f(u))vv(A, v). 

Using the convexity and the nonpositivity of q', we get 

- Jvv (A,v)(v -fQu))2dxdt <? j(uo(x),vo(x))dxdt. 

Then 

II f(u) - V I L2 (Q)?< CO . 

4. THE UPWIND SEMI-IMPLICIT RELAXING SCHEME 

The linear hyperbolic part of the system (3.1> has two Riemann invariants 

v + -/au and v- au 

associated with the characteristic fields A_ =-a and A+ = + a. 
The first-order upwind scheme applied to v + au gives 

(V + aU) jl1/2 =(V + u)j, (V - aU)j+1/2 = (V -aU)j+l; 

hence, 

Uj+1/2 = 2 (uj + Uj+?) -2 (vj+l -vj), 

vj+l/2 = 2(vj + Vj+?) - a(uj+l- Uj). 

We can then construct the following upwind scheme: 

(4.1) 

I n+(u1 -u ) + (Vj1-v ) )- 2 (uV+a 2un + Un Un)= 1) 

1 n+1 - n) + n (u? N-U> a)- 2hj(vj? n-2v n+v7i) 

t = --(Vjn+ 1 f (Un+ 1) ) C~~~~~ 
For the existence and uniqueness of the solution of (4.1), we prove the following 

result. 

Proposition 4.1. The system (4.1) admits a unique solution (u,n+1, vn), v1 n 
N,j E . 
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Proof. It suffices to prove that the first equation of (4.1) admits a unique solution 
(U>1). Indeed the function 

x i x - kq(x) 

is differentiable and strictly monotone since q' < 0. Then the first equation of (4.1) 
admits a unique solution Un+. 

5. THE RELAXED SCHEMES 

By making use of the Hilbert expansion again, applied to (4.1), we get as e tends 
to zero, the following relaxed schemes. 

5.1. The upwind semi-implicit relaxed scheme. Using a formal expansion of 
Hilbert type in (4.1), we get the following relaxed scheme: 

(5.1) 

JVin' 
= f (Uj0) 

{ Ujn - nf(u+1)) + U r(UjI - 2un + u>n) + kq 

To deal with locally bounded variation functions, we set 

QR =]-R,R[x]O,T[, for R> O, 
J = E(R/h), where E is the integer part function. 

Throughout this section, we set 

L = sup If'fj)t, M= sup I q'(u) 
uCA uCA 

where 

A = {v eE L'(R), 11 v IIL(R)?<I UO IILc(R)}. 

Proposition 5.1. Under the subcharacteristic condition (3.4) and the CFL condi- 
tion 

(5.2) ri/a < 1, 

we have 

i) The scheme (5.1) is monotone. 
ii) IUIn+1 IL-(z)<?I Un IIL-(z) 

iii) TV(un+l) < TV(un); that is, the scheme (5.1) is TVD. 
iv) Ejl<J | n+1 - Uj I< C,TV(un) + C2 || Un+1 LOO(Z), C1, C2 are positive 

constants. 

Proof. First we write the scheme (5.1) in the form 

JUn+1 = ft?+i + kq(un+l) 
(5.3) { = + (i u +U) ( ) l -n+l = n - 'r( n 1-f (Ujn_)) + 2a (Un1 2j+71 

i) To show that the scheme (5.1) is monotone, let us suppose that 

Un < Wn klj E Z. 

Using (5.3), we have 

[Urn+1 _ Wri+1]i fkq'(r1n)] = --n+l - fn+l LU W3 ii qCJ)U -iI 
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The second equation of (5.3) is a monotone scheme under the subcharacteristic 
condition (3.4) and the CFL condition (5.2), then 

un < Wn =:;> -n+l < -n+l 

Using the nonpositivity of q', we obtain 

j - Wj Vj E 

ii) Using (5.3), we have 

n+ kq(un+1) = -n+l 

Thus 

(1 - kq' (7))un+l = n+l 

where ql is nonpositive, then we obtain 

Taking into account the subcharacteristic condition (3.4) and the CFL condition 
(5.2), we easily show that 

1 Un+1 |Lo(7)? Un 

Then 

| rn+1 ||Lo(7)?| Un HLo() 

iii) By making use of (5.3), we get 

[U n+1 _ U?n+i [- Akql (Ce?)] = -?n+l _ n+l [ui _- 1 u~f[i kq(7)] -7 u_ 

and the nonpositivity of q' gives us 

TVu(n+1) < TVQ(Un). 

iv) From (5.1), we obtain 

U.+_[(f(r - f(Un)) + (f (Un) f Unp 

+ 2 [(U'n U- n)- (Un U-un1 + kq(u>n+1). 

Hence, 

|Ujn+l -un |< 2T E USn+l-i Un U711 

Then 

U - uS + C1TV(UT ) + C2 U Un1 HL(o), 

I-< 

with 

C = r(l +U), C2 rRM since Jh < R. 

Theorem 5.1. Under the subcharacteristic condition (3.4) and the CFL condition 
(5.2), the approximate solution Uh constructed by the semi-implicit scheme (5.1) 
converges in Ll10(Ikx]O, T[) toward the entropy satisfying solution of (1.1)-(1.2), 
as h tends to zero. 
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Proof. Using Proposition 5.1, we obtain that the sequence (Uh) is bounded in fam- 
ily in the space L? (R x ]O, T[) n BVc (R x ]O, T[). By a similar proof as in [6], we 
make use of Helly's theorem to get a subsequence extracted from (Uh) which con- 
verges toward the entropy solution of (1. 1)-(1.2), and the uniqueness of the entropy 
satisfying solution ensures that all the sequence (Uh) converges toward the entropy 
satisfying solution u of problem (1.1)-(1.2) as h tends toward zero. 

5.2. The upwind fully implicit relaxed scheme. Here, we consider the follow- 
ing implicit relaxed scheme: 

(5.4) 

l n+1 n _r ( (n+1 )_ (n+1 )) + var (un7 -2j++ nU}+1 +kq(un+,) . { ~~~~~(f(UN ) -f(U2) + - 2u0?1 + u?)+ 

First, we introduce, as in [31], the operator Tb, defined on piecewise constant 
functions by 

(5.5) 

Tt,(Uh) ; = Uj - 
p 

(f (uj+l) -f (uj_1)) + ,a 
r(uj+1 -2uj + uj_1), j 2 3 2 ~~~~~~~~2 

where ,u is a parameter satisfying p > 0, and Uh = (Uj)jcz. 

By a similar proof to that in [31] we can prove 

Lemma 5.1. Let Uh (Uj)j7z be a piecewise constant function. If the subchar- 
acteristic condition (3.4) is satisfed and if the positive parameter A is sufficiently 
small such that 

(5.6) At r,/,Fa < 1, 

then 

i) || T/-(Uh) ||L-(Z)<|| Uh IIL-(Z); 
ii) TV(T/,1(Uh)) < TV(Uh); 

iii) || T,(Uh) - T,1(Vh) flLI(Z)?W Uh - Vh flL1(Z) 

Next, we prove 

Proposition 5.2. Under the subcharacteristic condition (3.4), the approximate so- 
lution given by -(5.4) satisfies the following properties: 

i) 11 un+ L (Z)?<1 U7' JIL?(Z); 

ii) TV(un+l) < TV(un) (TVD character); 

iii) Zijl<J I U. -U |< CITV(un+1) + C2 || Un+, IILo(Z). 

Proof. i) Using the operator TI, defined in (5.5), the scheme (5.4) may be written 

U A ua + 1 T,1(u+l) + A +kq(u+) 

Applying the mean value theorem to q, we get 

[1 H-t kq/(Tn+l)]Un+l A t un + T,(Un+ 1 

Taking into account the nonpositivity of q', we obtain 

|Un+1 |LNZ)? 11 Un I1L-(Z) + 11 T,,(u n+ ) 11L(Z) 
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By making use of Lemma 5.1, we have 

11 TJu )r+ UILz ||u IL?-(Z) 
Hence, 

1 
n1 

L (Z)< 1 + 11 U IL-(Z) +Un1 IIL(Z)1 

Then 

nt+1 'Un || U IIL-(Z)<I I u|L?(Z). 

The properties ii) and iii) may be proved as in the former semi-explicit case. 

Proposition 5.3. If the subcharacteristic condition (3.4) is satisfied and 

(5.7) k sup I q'(u) < 1, 
uGA 

then the scheme (5.4) admits a unique solution (U n+1)jcz E L'(Z). 

Proof. The scheme (5.4) may be written 

n+1= 11 UT + 
I 

T2l) (Un+1). 

Let us introduce the operator T: L1(Z) L 1 (Z) defined by 

(5.8) T(u)j 1 +T(u)3 + k kq(u)j Vj E Z. 

We have 

- T(u)-T(v) IIL1(z) < 1 +< Tt (u) -T, (v) L1 (Z) 

+ ' k sup I q'(u) I I IU - vIIL1(z) +,u uGA 

Using Lemma 5.1, we get 

II T(u)-T(v) |L1(Z)< C || U-V hl(Z), 

where 

C= + 1' ksup q'(u) I 1 + 1 + uGA 

By condition (5.7), we have 

0 < C < 1. 

Then T is a contraction; therefore, there exists a unique solution of (5.4) in L1 (Z). 

Theorem 5.2. Under the subcharacteristic condition (3.4) the approximate solu- 
tion Uh constructed by the implicit scheme (5.4), converges in Llo (Rx]O, T[) toward 
the entropy satisfying solution of (1.1)-(1.2), as h tends to zero. 

Proof. Using Proposition 5.2, the family of the approximate solution (Uh) is bound- 
ed in L?(lRx]O, T[) n BV10c(lRx]0, T[). Then by Helly's theorem, we can extract a 
subsequence still labeled (Uh) which converges toward u in Ll (IRxJO, T[). To show 
that u satisfies the entropy condition (2.3), we proceed exactly as in [5]. 

Remark 5.1. We point out that the former result was proved without any CFL 
condition. 



964 A. CHALABI 

5.3. The MUSCL semi-implicit relaxed scheme. To construct a second order 
accurate (in space) scheme using the Van-Leer method ([30]), we will need the initial 
boundary values inside cell j: 

(vn + ua)J 1/2 = (Vn + x/au n)j + 1/2h8+n 

(Vn - xaun)j+1/2 = (vn -_ x/IUn)j+, - 1/2h68yl, 

with 

(5.9) - = +1 a + 1 -vj ? auj) 0 ) 

and 

- 
Vji ? a3uj - vj-li x\auj-l 

i vj + 1 vfauj + - Vj ? fauj 

where q$ is a limiter function as defined by Sweby in [27] and satisfies 

(5.10) 0 < ?A < 2, 0 < q(O) < 2. 

Then 

n ~ ~~1h -t 
Uj+1/2= 2(U + Un1) T(vn1 -vn) + +n 

and 

Vjn2 (Vjn +Vjn+ )4U n lUn) +h(6tn _ 6-n 
V~1/2 2 27z 

) j+ i 43 J 

Then the second order (in space) accurate semi-implicit relaxed scheme is given by 

(5 .11 ) t n+1 Un _ r n(f 1 )- (UL, 1)) + v/ar -2uj-+nuL_1) 
(5.1) U. +f(U 81 - 2 + + - t + 4 (^^+nl _ dj~~ + 6J+nl _ 6j+n) + Un(un+ 

Let 

C = 2r (vfa+ j i+j i ) Djaj -f( u)) 

By the subcharacteristic condition (3.4), we hav 

Cj > O Dj > D O. 

The scheme (5.11) may be written in the form 

(5.12) un+1 = _n+I (Un+1 

with 

(5.13) U.+ = j n1unun1) + Djn(uJn+j-in 
k 

+-(1rv'a)(y _4 - 8,-n + ,+n _ -k+n 

By using (5.9) and the definition of Cj and Dj, we have 

dj+ = h y(uj+i - Uj), d=- ADj((uj+l-uj). 
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Dropping n in the right-hand side, (5.13) gives 

(5.14) U = u-C;_1(uj -uji)+Dj(uj+?-uj) 

-caDj+10i$ (Uj+2 - Uj+l) + -aDjq7-(uj+l -u) 

I I~~~~~ 
+ 2Ce Bb-10+ 1(uj - ui-) - 2aCj?q+(uj+l-uj), 

where 

Taking into account the equalities 

O+j+ (uj+ - uj) =Cj-1 (u - uj_j), Sj-Dy (uj+ - u) =Dj_- (uj -uj-1), 

this leads to 

(5.15) Uj+ = [1 + 2?g -i_X )C_u- 

+ ( 1-(1 1 - + 2S ) Cj _ -1 - - a ( - 0 

+ (1- lajJ fy+-4) )jy 
2 +l 

Now, we prove that the coefficients of uji, u; and uj+i in (5.15) are positive. 

Lemma 5.2. Under the subcharacteristic condition (3.4) and the CFL condition 
1 4+ 

A +, ( l-(1- jxXi1 + O- +))Djuj -D_l-2ori-S+ ) 

.~~~ 0 

No,re posatve. ta h ofiinso j, jadu+ n(.5 r oiie 

(5.16) v=r r we < 
the coefficients 

Ai [+ T - 

1- (1 + 2- 2 O1 __ - a$- j-I-1 

A31j 1 --Dj 

are posittive. 

Proof. From (5.10) we have that 

Ti +.1 < 2. 

Then 

1 + -,,j- <+-i) > 1- 1-(-v) i> 0; 

Cj being positive, then the coefficient A1,j is positi-ve. By a proof similar to the 
former one, we get that A3,j is positive since Dj is positive. 
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Let us now prove that A2,j is positive. 

A2, I C1 - (Cj-1 + D--1)--a[ - 
T 

C3 1 + ( 3 - _)Dj]. 3- 3 +~~~~~~~~~~ 

The definition of Cj and Dj gives 

Ci-l + D- =ra = v < 

Hence, 

A2,j > I + -a?j)3_1 - v - co(C.-i + Dj) 

>1+1 
j 

? 
_ - v - axv - rva > 1 + 2 v2 _-3v +1 

- 2 +V2 

> 2a 19j-lc -1 since v < 

> 0. 

Proposition 5.4. Under the subcharacteristic condition (3.4) and the CFL condi- 
tion (5.16), the scheme (5.11) is L?D. That is 

(5.17) || U IIL(Z) 11 IUn 

Proof. The scheme (5.11) may be written 

(5.18) uin?l =Ui+ + kq(unl 

with 

(5.19) uj= [1 + -a( - 

+ (1-2??a 1 ? t oi $)Cj -Dj_ -- 'cv(q$ -0 31)Dj1u + [1-2 1-fti+ j-uj1- + 2 0.~ 

Let us first prove that 

indeed, 

+ + (I - A1,3 +u> + A2,uCj + A3,ju?l-D 

By Lemma 5.2, A1,y, A2,i and A3,3 are positive under the CFL condition (5.16). 
Hence 

-n?1 ~ ~ ~ ~ ~ ~~~~~~~~+ 
| j+ <A, j_ -a +A2, . )Duj +A3j.1u 

< A1,j1 U7 |L~(Z) +A2,j 11 UIL~(Z) -+A3,j | U |Lz 

After simplification we get 
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since 

A1,j + A2,j + A3,j -1. 

Then 

(5.20) U1 L? <U L (Z) - 

Using the mean value formula in (5.18) and then as in the proof of Proposition 5.1, 
we obtain 

I I un+ 1 || ()<||Un ||LO ). 

By a similar proof to that of Proposition 5.4, we may prove 

Proposition 5.5. Under the subcharacteristic condition (3.4) and the CFL condi- 
tion (5.16), the scheme (5.20) satisfies 

i) TV (Un+1) < TV (Un); 

ii) LEjj;J I U n+ -_ |C < CjTV(un) + C2 || Un+1 IL-(Z) 

Using Propositions 5.4 and 5.5, we get that the family of the approximate solu- 
tions (Uh) is bounded in L?(Rx]O,T[) n BV,(R xI 0,T[) and then we are able to 
prove the following result. 

Theorem 5.3. Under the subcharacteristic condition (3.4) and the CFL condition 
(5.16), there exists a subsequence from the approximate family (Uh), which converges 
in L 1 , (Rx]0, T[) toward a weak solution of (1.1) -(1.2) as h tends to 0. 

Remark 5.2. Time discretization may be achieved u5ing the Runge-Kutta method 
as in [61 and [131. 

6. EXTENSION TO THE TWO DIMENSIONAL CASE 

We consider now the two dimensional Cauchy problem: 

(6.1) Ut + f(u)x + g(u)y =q(u); (x, y, t) E 1R2 x]0, T[; T > 0 

and 

(6.2) u(x, y, 0) uo(x, y); (x, y) E 1R2. 

In this case, -we assume that 

uo BV(R2); f, ge C1(R) 

and 

q (E C' (R), q(O) = O, q' < O. 

The existence and uniqueness of the solution of (6.1)-(6.2) is established by Kruzkov 
in [18]. 

The associated relaxation system with (6.1) is 

Ut ? v + Wy =q(u), 

(6.3) vt + auX -- -f (u)), 

wt + buy = (w- g(u)). 
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As in the one dimensional case, the system (6.3) is dissipative under the following 
subcharacteristic condition: 

(6.4) /( )) + ( <1 Vu. 
a b - 

Let 

At At 
r=Ax' Ay 

Using the same method as in Section 5, the relaxed scheme for (6.1)-(6.2) is 

(6.5) 
V., f f(Ui,j) 

wnj g(Unj) 

I r (f (U nj) - f(u.i, )) + 2(u4+-,j - + 

-(-j+) 9g(U j1)) + 2 (U, -2u j + u2_ ) + Atq(out,) 

with 

0 __ 

1 
f(j+l/2)AX ((j?+/2)Ay UiuoA J ] U(x, y)dxdy. 

3 
A\XAY (j-1/2)A\x (j-1/2)A\y 

A solution of (6.1)-(6.2) is approximated by a function Uh defined on l2 x]O, T[ by 

(6.6) 
Uh(X, y, t) = unj for (x, y, t) E](i - 1/2) Ax, (i + 1/2) Ax[ 

x](j - 1/2)Ay, (j + 1/2)Ay[x[nAt, (n + 1)At[ 

with 

(i, j) C 22 and n < N = E(T/k) + 1. 

Proposition 6.1. Under the subcharacteristic condition (6.4) and the CFL condi- 
tion 

(6.7) v = ra+ sv/b < 1, 

the scheme (6.5) satisfies 

i) | Un IIL (7ZxZ)I U IL (7ZxZ) 
ii) TV (u1n+1) < TV (,n ), 

iii) EZi?<Ii<J I Uij j 
? C,TV(un) + C2 

where 

| Un|IL (ZXZ)= SUP I Uinj I 

and 

T(Un) 
n Un nj + Unj IAx. TV() = |Ui+l,i-U ij | AYS + Ui,jlUn i /X 

i,jEC i,j CZ 

The proof is similar to those of Propositions 5.1-5.5. 
As in subsection 5.1, using Proposition 6.1 we prove the following theorem. 
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Theorem 6.1. Under the subcharacteristic (6.4) and the CFL condition (6.7), the 
approximate solution Uh given by the relaxed scheme (6.5) converges toward the 
entropy solution of (6.1)-(6.2). 

Remark 6.1. Second order accurate schemes may be constructed as in subsection 
5.3; however these schemes will not be TVD (see [12]). 

7. CONCLUSION 

We presented an analysis of a class of relaxation schemes for hyperbolic conser- 
vation laws including stiff source terms. This method was introduced for the first 
time by Jin and Xin in [16] for the approximation of hyperbolic conservation laws 
without source terms. The constructioni of these-schemes is based on the approxi- 
mation of an associated linear hyperbolic system with a stiff source term depending 
on a small parameter c (relaxation time). This method allows us to avoid the use 
of a Riemann solver. 

With an adequate and realistic hypothesis, (q'(u) < 0) on the source term q(u), 
that is with a dissipative (in some sense) source q(u), we proposed semi-implicit 
and fully implicit numerical schemes possessing good properties, such as monotony, 
TVD character, etc., exactly as in the case of conservation laws without a source 
term (q = 0). 

Under reasonable CFL conditions, we established the convergence of the approx- 
imate solution toward a weak solution or to the entropy satisfying solution (in some 
cases). 

An extension of this analysis to the multidimensional case is given at the end of 
this paper. 

We think that a direct study (stability, bound error, convergence, etc.) of the 
relaxing schemes (4.1), which depend on the relaxation rate c, will be of interest, 
especially as concerns the link between this small parameter c and the discretization 
steps At and Ax. 
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